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ABSTRACT

Retrospective forecasts from CFSv2 are evaluated in terms of three elements of land–atmosphere coupling

at subseasonal to seasonal time scales: sensitivity of the atmosphere to variations in land surface states, the

magnitude of variability of land states and fluxes, and the memory or persistence of land surface anomalies.

The Northern Hemisphere spring and summer seasons are considered for the period 1982–2009. Ensembles

are constructed from all available pairings of initial land and atmosphere/ocean states taken from the Climate

Forecast SystemReanalysis at the start of April,May, and June among the 28 years, so that the effect of initial

land states on the evolving forecasts can be assessed. Finally, improvement and continuance of forecast skill

derived from accurate land surface initialization is related to the three coupling elements. It is found that soil

moisture memory is the most broadly important element for significant improvement of realistic land ini-

tialization on forecast skill. However, coupling strength manifested through the elements of sensitivity and

variability are necessary to realize the potential predictability provided by memory of initial land surface

anomalies. Even though there is clear responsiveness of surface heat fluxes, near-surface temperature, hu-

midity, and daytime boundary layer development to variations in soil moisture over much of the globe,

precipitation in CFSv2 is unresponsive. Failure to realize potential predictability from land surface states

could be due to unfavorable atmospheric stability or circulation states; poor quality of what is considered

realistic soil moisture analyses; and errors in the land surface model, atmospheric model, or their coupled

interaction.

1. Introduction

Observationally based conjecture on the role of the

land surface in seasonal climate dates back to at least the

mid-twentieth century (e.g., Namias 1959, 1960) with a

number of numerical modeling sensitivity studies be-

ginning in the 1970s [see Dirmeyer and Shukla (1993)

for a review]. Over the last 15–20 years, the importance

of the land surface states to weather and climate has

been thoroughly investigated with models. Much of the

research that has contributed to the understanding of

large-scale land–atmosphere coupling has taken place

via the Global Land–Atmosphere System Study within

the Global Energy and Water Exchanges project

(GLASS/GEWEX; van den Hurk et al. 2011). This has

occurred in the context ofmultimodel experiments using

both stand-alone land surface models (Dirmeyer et al.

1999, 2006) and coupled land–atmospheremodels (Koster

et al. 2006, 2011; Guo et al. 2006, 2012; Seneviratne et al.

2013; Berg et al. 2015; Lorenz et al. 2016) as well as many

single-model studies (e.g., Berg et al. 2013; Roundy et al.

2014; Roundy and Wood 2015; Lorenz et al. 2015) and a

smaller number of observationally based analyses (e.g.,

Ferguson and Wood 2011; Zhang and Klein 2013; Ford

et al. 2015). Recently, single-column model investigations

have been added to the list of coupled land–atmosphere

studies (Best et al. 2013).

The effect of changes in the state of the land surface

on weather and climate has typically been investigated

throughmodel sensitivity studies, where some aspects of

the land surface or the connections between land and

atmosphere in the model are altered, and the response

of the climate system is determined through a compar-

ison to a set of control (unaltered) simulations with the

same model. The changes may be made to land surface
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states such as soil moisture (e.g., Koster et al. 2006),

snow (e.g., Bamzai and Marx 2000), or vegetation (e.g.,

Betts et al. 2007); to surface properties such as albedo

(e.g., Betts 2000) or roughness (e.g., Sud et al. 1988); or

to fluxes that connect land and atmosphere such as

surface heat fluxes (e.g., Koster et al. 2000), pre-

cipitation, or radiative fluxes (e.g., Dirmeyer and Zhao

2004). In each case, the impact of the specific change is

isolated in that model. Multimodel investigations with

similar perturbations across many models provide a

more tenable result, less likely to be peculiar to a par-

ticular model’s behavior (Tebaldi and Knutti 2007).

What sensitivity studies do is to intervene in the pro-

cess chains that serve as feedback pathways from land to

atmosphere in the physical climate system (Dirmeyer

2006; Betts 2009; Santanello et al. 2011, 2013; Dirmeyer

et al. 2015). These chains pass primarily through the

water and energy cycles, linking land surface states to

surface fluxes, near-surface atmospheric states, and ul-

timately properties of the planetary boundary layer that

affect buoyancy and convection, the likelihood of cloud

formation and precipitation (e.g., Tawfik et al. 2015a).

A general paradigm is emerging that significant

feedbacks of the land surface to the atmosphere exist

when and where three key elements are present and

sufficiently strong in the land–atmosphere system. The

first necessary element is sensitivity: there must be a

demonstrable response of one state or flux to variations

in another—a bivariate relationship underpinned by

real physical processes (e.g., Guo et al. 2006; Dirmeyer

2011; Lorenz et al. 2015). In this case, we are most

concerned with connections that link the state of the

atmosphere to a change in the land surface. This can be

quantified in many ways, but the most common involve

the demonstration of covariability between an aspect of

the land surface and a corresponding aspect of the at-

mosphere. Such an approach is built on the assumption

that a reasonable physical causality exists to generate

the covariability, and furthermore that the causality is

significant in the direction from land to atmosphere. In

other words, it is expected that the change in the at-

mospheric property is the ‘‘effect’’ in the relationship.

Modeling studies are especially useful in demonstrating

such causality as one can specify the source of the

change (e.g., by specifying an anomaly in soil moisture)

and witness the response in the atmospheric component

of the model system (e.g., Dirmeyer 2000; Koster et al.

2004; Hirsch et al. 2014). In nature, it is much more

difficult to ascertain such feedback relationships, espe-

cially since there already exist strong causal relation-

ships from atmosphere to land (precipitation necessarily

increases soil moisture, excessive heat promotes greater

potential evaporation, etc.).

A specific example of sensitivity quantified by cova-

riability is the relationship between soil moisture and

latent heat flux/evapotranspiration (Dirmeyer et al.

2009). It is fairly straightforward to calculate the corre-

lation between these two quantities, using daily means

from observations at a flux tower with collocated soil

moisture measurements, or from land surface model

output. A significant positive correlation between soil

moisture and evapotranspiration (ET) is an indicator

that a land surface feedback is at play, that is, that soil

moisture is a factor in controlling evaporation. In this

case, an increase (decrease) in soil moisture results in an

increase (decrease) in ET, meaning that it is not a lack of

energy but a lack of water in the soil that is restricting

the rate of ET. If the two quantities are negatively cor-

related, it would indicate that ET is the driver and soil

moisture is responding to ET—an increase in ET draws

down soil moisture while a lack of ET allows soil mois-

ture to remain elevated. In this situation, it would be the

other controls onET such as available energy, dryness of

the lower atmosphere, or strength of the wind that are

ultimately controlling the link with soil moisture, and

the state of the soil moisture itself is not governing the

surface fluxes.

The second element for significant land–atmosphere

feedback is variability. Strong sensitivity is of scant

consequence if the forcing component in the feedback

does not vary much in time or manifest in large anom-

alies (Guo et al. 2006). A clear example of sensitivity

without variability exists in the world’s warm deserts. In

these locations, energy to supply ET is abundant, but

water is lacking. Therefore, a strong positive correlation

between soil moisture and ET is found in these loca-

tions. However, in deserts rain rarely occurs, so soil

moisture is seldom available for evaporation. Thus, al-

though there is ample sensitivity of surface fluxes to soil

moisture, the latter’s absence in all but rare instances

means that its overall variance is small, and it seldom has

an impact on the overlying atmosphere. Locations

where soil moisture varies appreciably from day to day

and week to week have, in the presence of sensitivity,

greater feedbacks to the atmosphere via the water cycle

than perpetually dry (or wet) locations. The elements of

sensitivity and variability are often combined into a

singlemetric of coupling (e.g., Guo et al. 2006; Dirmeyer

2011; Lorenz et al. 2015).

The third element is the persistence of anomalies or

‘‘memory’’ (Delworth and Manabe 1989; Koster and

Suarez 2001). The longer a land surface anomaly en-

dures in a region that also has significant sensitivity and

variability, the greater the cumulative effect on the at-

mosphere can be. Several factors affect land surface

memory. Properties of the land surface, particularly soil
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texture, soil and rooting depths, and the general hy-

drologic characteristics of an area affect the persistence

of soil moisture anomalies. The atmosphere is also a

major determinant of land surface memory. Baroclinic

regions with frequent synoptic-scale storm passages

tend to have relative low memory as the periodic storms

inhibit the lifetime of soil moisture anomalies except

when induced by persistent large-scale atmospheric

circulation anomalies. Downslope regions in mid- and

high latitudes that experience alternating cold and foehn

winds have difficulty maintaining positive snow cover

anomalies.

Modeling studies and validation efforts have led to

growing confidence in the actuality of the land surface’s

sway over aspects of weather and climate (e.g., Beljaars

et al. 1996; Dirmeyer 2000; Koster et al. 2004, 2011;

Fischer et al. 2007). However, a systematic assessment of

coupled land–atmosphere signatures in an operational

forecast model in the context of sensitivity, variability,

and memory has not been undertaken. In this paper, we

examine the operational forecast model of NOAA/

NCEP (CFSv2) to determine its characteristics in each

of the three elements of land–atmosphere coupling. This

model has been investigated in the context of its existing

Climate Forecast System Reanalysis (CFSR) and Re-

forecast (CFSRR; Saha et al. 2010) dataset for land–

atmosphere feedbacks (Dirmeyer 2013; Roundy et al.

2014; Roundy and Wood 2015). In a companion study

(Dirmeyer and Halder 2016), the effect of land surface

initialization on the first hours and days of forecasts is

investigated. In this study, we assess the model’s re-

sponse to the initialization of land surface states in terms

of changes in forecast skill, and whether they can be

attributed to the elements described above.

Section 2 describes the coupled land–atmosphere–

ocean model, retrospective forecast experiments, and

validation datasets. The properties of sensitivity, vari-

ability, andmemory are quantified in sections 3, 4, and 5,

respectively. Their separate and aggregate association

with forecast skill is examined in section 6. Section 7

presents conclusions.

2. Model, experiments, and validation data

CFSv2 is the global model used in this study (Saha

et al. 2014). The coupled model consists of the Global

Forecast System, version 2 (GFSv2), atmospheric model

coupled to the Noah land surface model, version 2.7.1

(Ek et al. 2003), and to the Modular Ocean Model,

version 4 (MOM4; Griffies et al. 2004).

The atmospheric horizontal resolution for hindcast

experiments is approximately 0.98 (T126 spectral reso-

lution) and the ocean has a horizontal resolution of 1/28,

increasing to 1/48 in the meridional dimension near the

equator. GFSv2 has 64 sigma–pressure hybrid levels

extending up to 0.26 hPa and MOM4 has 40 levels down

to 4740m. Sea ice is predicted using a modified version

of the GFDL Sea Ice Simulator (cf. Saha et al. 2010).

Noah has four soil layers extending to a depth of 2m

and calculates the surface energy and water budgets

and estimates the transpiration component of evapo-

transpiration based on plant water stresses. Soil and

vegetation characteristics are prescribed to vary spa-

tially across the globe, and a climatological seasonal

cycle of vegetation fraction is imposed but leaf area

index is fixed (Meng et al. 2012). Snow is treated as a

single thermodynamic slab.

We focus on the boreal warm season because of the

extensive global land area that is in a water-limited

surface flux regime and thus more sensitive to land–

atmosphere feedbacks (e.g., Song et al. 2016). Ensemble

retrospective forecast simulations are initialized at

0000 UTC on the first day of April, May, and June and

continue until 0000 UTC 1 October for each of the 28

years spanning 1982–2009. For each initial date, the

baseline ensemble member (control run) is initialized

from the NCEP CFSR (Saha et al. 2010) for that date.

The initialization approach for the control runs is essen-

tially the same as the reforecasts fromCFSRR except the

initialization dates are at the start ofmonths. The other 27

ensemble members are initialized with identical atmo-

sphere, sea ice, and ocean states as in the baseline simu-

lation, but initial land states are taken from each of the

other 27 years (cf. Schlosser and Milly 2002). The result

for each forecast start date (1 April, 1 May, and 1 June)

is a matrix of 283 285 784 forecasts with each possible

combination of initial atmosphere, ocean, and sea ice

states versus initial land from CFSR. Model output is

every 6h and averaged to daily means (partitioned at

0000 UTC) for the analyses presented here.

The atmospheric model GFSv2 used to generate

CFSR has a higher spatial resolution (T382, ;38km)

than our experimental configuration, so initial states are

interpolated to the lower resolution. Land states used

for initialization of our reforecast experiments include

soil water and ice content, soil and skin temperatures,

snow mass, and canopy water content that are based on

the CFSR surface analysis. To ensure that biases in

model parameterization schemes that may lead to sys-

tematic errors in the precipitation statistics are pre-

vented from affecting the soil moisture states, observed

precipitation and snow depth analyses were used in the

CFSR GLDAS Land Information System (LIS) frame-

work, which is derived from the NASA version of LIS

(Peters-Lidard et al. 2007). The land surface analysis

produced, also using Noah to maintain consistency of
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model physics, replaced the land surface state variables

of CFSR every day at 0000 UTC from the previous 24 h

GLDAS simulation. In following this methodology, the

land surface model is said to be ‘‘semi-coupled’’ to the

atmosphere in CFSR. The GLDAS LIS uses a similar

land–sea mask, terrain height, soil and vegetation data,

and related parameters as in the CFSR at the same

resolution.

To address spinup issues over land, the initial con-

ditions for the GLDAS LIS simulation were derived by

averaging GFSv2 daily land surface states for the years

2006 and 2007 along with additional spinup for one

year. The offline simulation used atmospheric forcing

from the Global Data Assimilation System (GDAS)

and a global observed precipitation analysis mentioned

above, optimally blended with the background 6-hourly

precipitation generated by the GDAS. The global

daily precipitation analysis is generated by merging of

the satellite and gauge-based CMAP (Xie and Arkin

1997) pentad (5 day) data and the CPC Unified

Gauge-Based Analysis of Global Daily Precipitation

that follows the method of Xie et al. (2007). At high

latitudes model precipitation from the Climate Data

Assimilation System (CDAS) is included, transition-

ing to the gauge and satellite observations at lower

latitudes.

The daily snow water equivalent depth analysis was

generated from the snow depth analysis (SNODEP) of

the Air Force Weather Agency (Kopp and Kiess 1996)

and the NESDIS Interactive Multisensor Snow and Ice

Mapping System (IMS; Helfrich et al. 2007). The data

were horizontally interpolated conserving total water

volume, following Accadia et al. (2003). After February

1997, the IMS data were used as they had better quality

control than the SNODEP data. The snow depth and

liquid water equivalent from the coupled model were

updated every day at 0000 UTC by comparison of

the forecast guess field and the daily analysis, for

maintaining a smooth evolution of the snowpack. Like

precipitation, the daily snow analysis at 0000 UTC was

also used to update the snow states in the GLDAS LIS.

However, there are two important differences between

the Noah land surface model used to generate the CFSR

and the GLDAS LIS, and CFSv2 used for our refor-

ecasts. To ameliorate a low-level warm bias over the

midlatitudes found while performing CFSv2 reforecasts

(Saha et al. 2014), vegetation parameters in CFSv2/

Noah were tuned and rooting depths extended into the

lowest soil layer so as to increase surface evapotranspi-

ration and hence reduce temperatures (cf. Roundy et al.

2014). Additionally, the runoff parameters of the land

surface model were adjusted to correct a low bias

in runoff.

In addition to changes in Noah, there are other dif-

ferences in the GFSv2 used in CFSR and CFSv2 (Saha

et al. 2014). While CFSR used enthalpy as a prognostic

variable, virtual temperature was used in CFSv2. To

reduce the excessive formation of low marine stratus

clouds leading to cold equatorial SSTs in CFSR (Saha

et al. 2010; Sun et al. 2010), earlier cloud physics modi-

fications made to GFSv2 were turned off. A cumulus-

convection-based gravity wave drag parameterization

(Chun and Baik 1998) was also introduced in CFSv2.

Apart from these, a new Monte Carlo independent

column approximation (McICA) scheme (Barker et al.

2002; Pincus et al. 2003) was incorporated to better re-

solve variability of layered clouds in a grid and cloud–

radiation interactions along with the Rapid Radiative

Transfer Model (RRTM; Mlawer et al. 1997; Iacono

et al. 2000; Clough et al. 2005) used in CFSR.

The sea surface temperature (SST) analysis for the

ocean uses two daily SST analyses at 1/48 developed using
an optimum interpolation scheme. The first is AVHRR-

only SST data (fromNovember 1981 throughMay 2002)

and the second is combined AMSR and AVHRR SST

data from June 2002 onward (Reynolds et al. 2007).

Because of lack of observed sea ice thickness and

transport data during the entire period of CFSR, only

sea ice concentration data are prescribed as an initial

condition. Sea ice concentrations are derived from the

Cavalieri et al. (1996, 2007) dataset through 1996, after

which the NCEP operational ice analysis (Grumbine

1996) is used. A detailed description of the preparation

of CFSR may be found in Saha et al. (2010). Retro-

spective forecast validation in this study is performed

against the CFSR dataset. Interannual temporal anom-

aly correlation coefficients (ACCs) of pentad mean or

monthly mean forecasts at increasing lead times from

initialization are calculated for each set of forecasts with

the same initialization date. For the cases with realistic

land surface initialization, the single member for each

initial month and forecast year is used; otherwise, en-

semble means are considered.

3. Sensitivity

The first element of land–atmosphere coupling we

examine in CFSv2 is the sensitivity of surface latent and

sensible heat fluxes to soil moisture state.We look at two

related statistics: 1) contemporaneous Pearson product-

moment correlation between daily fluxes and moisture

in the top 10 cm of soil and 2) the slope of the best fit

linear regression of fluxes as a function of soil moisture.

In each case, statistics are aggregated bymonth (actually

30 days for every month) for a period spanning boreal

spring and summer (April–August) using all dailymeans
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from all forecasts in the month. For April, each model

grid box over land includes 283 283 305 23 520 days in

the calculations. ForMay, forecasts initialized on 1April

and 1 May are included, so the sample is doubled. For

June the June forecasts are added, tripling the sample

size. The July and August estimates step back down in

sample size as data beyond the third month of any

forecasts are not used in these estimates. This neces-

sarily mixes data from various forecast lead times, both

within and between months, but is an unavoidable

consequence of the experimental setup. We have com-

pared results shown in this paper to calculations using

only the first or third months of forecasts and find the

fluctuations to be small. The only noticeable area of

variation appears to be over northeastern Asia in June

(not shown), associated with themodel snowmelt biases.

Given that this is not a region of strong land–atmosphere

coupling, we conclude that our compositing approach

does not significantly affect the results. The sample sizes

are so large that essentially all colored areas in maps are

significant at better than 95% confidence.

As alluded to above, there is growing drift in the

forecasts such that the climatology of June, for instance,

is not identical to the 1-month forecast initialized on

1 June and the 3-month forecast initialized on 1 April.

The most prevalent differences are related to systematic

errors in the simulation of snowpack and a delayed

timing of snowmelt that affect a number of variables on

the edge of the retreating Northern Hemisphere snow

field including soil moisture and temperature (cf.

Dirmeyer 2013).

Associations between correlation, slope of the linear

regression, and variances among soil moisture and sur-

face fluxes have been described in terms of the terres-

trial coupling index (Dirmeyer 2011; Dirmeyer et al.

2012). Correlations between 0–10-cm soil moisture and

both latent and sensible heat fluxes are shown in Fig. S1

in the supplemental material; Fig. S2 in the supple-

mental material shows the sensitivity as the slope of the

linear regression [d(flux)/d(soil moisture)]. These met-

rics are not novel and have been shown for a variety of

models in other studies; CFSv2 results in Figs. S1 and S2

are comparable to other studies and are described in the

supplemental material. We will note here that in Fig. S1

negative correlations exist in agricultural areas as a

consequence of the extension of root depths into the

lowest soil layer of Noah, which results in excessive

humidity, cloud, and shallow boundary layers, particu-

larly over the Great Plains (Roundy et al. 2014;

Dirmeyer and Tawfik 2014).

Sensitivity can vary with soil moisture itself (e.g.,

Koster et al. 2009; Roundy et al. 2014). We expand upon

the sensitivity metrics by quantifying not just where but

when (in terms of soil moisture state) the atmosphere is

sensitive to fluctuations in the land state. At each model

grid box for each month we find the largest and smallest

values of daily volumetric soil moisture and divide that

range into three bins of equal width: a dry bin, a mod-

erate bin, and a wet bin. We then recalculated correla-

tions separately within each bin. Figure 1 shows when

and where there are correlations exceeding60.4 in each

bin, suggestive of strong terrestrial coupling over North

America (global versions of all North America maps are

provided in the supplemental material, e.g., Fig. S3 in

this case). In all calculations involving soil moisture, land

regions lacking intraensemble variability of 40–100-cm

soil moisture (intraensemble variance 5 0 on day 30 of

the forecast) aremasked out, predominantly affecting the

most arid desert points and areas of frozen ground.

For latent heat flux, the correlations are large across

the whole range of soil moisture only over the driest

regions. The range of sensitivity contracts to the dry and

middle thirds in areas north and east of the desert

Southwest, expanding further from spring through

summer. Beyond that in July and August is an area

covering most of the Great Plains where only relatively

dry soils contribute to large correlations. There is also an

area of dry-only sensitivity that moves north from the

central Rocky Mountains in April to the Arctic coast in

June and July, following the melting snow. Very few

locations show significant correlations biased toward the

wet end of the soil moisture spectrum, and they are

frequently individual grid boxes suggesting they may be

the result of computational noise rather than coherent

regions of systematic characteristics.

For correlations of sensible heat flux with soil mois-

ture (Fig. 1, right) there is often a tendency for strong

coupling on the wet side of the soil moisture range

(shades of blue), although over much of Texas and

Mexico there is broad sensitivity in summer. An in-

teresting exception appears over theGreat Plains in July

and August, where sensitivity is also confined to the dry

range, corresponding well with Fig. 1 (left). For both

fluxes, summer correlations with soil moisture are gen-

erally low over the eastern parts of Canada and the

United States, except near the Gulf Coast. It should be

noted that bins specified in this way contain very dif-

ferent numbers of points, as soil moisture is rarely dis-

tributed evenly across its range (see Fig. S4 in the

supplemental material).

The atmospheric leg can be examined in many ways.

We consider the surface flux variations that are the

consequences of land variability (the terrestrial leg) as

drivers or forcings of the atmospheric leg. Through the

energy cycle, one of the most direct connections is be-

tween surface sensible heat flux and the depth of the
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daytime planetary boundary layer (Betts et al. 1996).

The evolution of this linkage fromApril throughAugust

is shown in Fig. 2 (left) (globally in Fig. S5 in the sup-

plemental material). Strong positive correlations exist

over the tropics, mountainous areas, and snow-free

higher latitudes. It is easier to explain the areas that do

not have strong positive correlations. Over snow the

correlations are negative because deeper boundary

layers accompany warm advection and snowmelt, which

is a negative sensible heat flux and a consequence of the

FIG. 1. Soil moisture bins over North America where the correlations of soil moisture with (left) latent heat flux

are greater than 0.4 or (right) sensible heat flux are less than 20.4. ‘‘Dry,’’ ‘‘moderate,’’ and ‘‘wet’’ refer to soil

moisture state where the range of simulated soil moisture is divided into three bins of equal span.
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warm advection. Weak or negative correlations over

much of the agricultural belt of central North America

are another symptom of the extended rooting depths in

Noah mentioned previously.

The agricultural footprint in central North America is

very clear in the correlation between surface latent heat

flux and total column cloud cover in Fig. 2 (right). Those

regions exhibit considerable negative correlations, sug-

gesting that over those regions increasing (decreasing)

cloud cover limits (increases) net radiation and reduces

(increases) evaporation. This is the signature of a well-

watered regime, like exists in rainy areas of the tropics

FIG. 2. Correlations between the indicated terms for the atmospheric leg of land–atmosphere coupling. The colored

bars below each panel are proportional in width to the area of the map in each category.
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and coastal high-latitude forests. Strong positive corre-

lations exist mainly in three regimes: semiarid regions

wheremoisture is fairly limited but energy is plentiful, in

baroclinic regions (e.g., much of Canada), and over snow

and ice. In semiarid regions, it cannot be told without

sensitivity studies to what degree the positive correla-

tions arise because increased evaporation enables more

cloudiness or that cloudiness is an indicator of pre-

cipitation that supplies moisture for evaporation that

would not normally be present. Over baroclinic regions

and snow the linkage is clearer: cold dry air is clear but

incapable of accepting much moisture from snow sub-

limation, while warmer air can drive strong sublimation

and support low cloud formation. Similar patterns are

seen for the correlation between latent heat flux and

boundary layer cloud cover (not shown) except that the

tropical regions become positively correlated, suggest-

ing the presence of the ‘‘wet soil advantage’’ regime

(Findell and Eltahir 2003a,b; Ferguson et al. 2012).

Correlations of surface heat fluxes with convective

available potential energy and convective cloud cover

are almost ubiquitously positive for latent heat flux and

negative for sensible heat flux (not shown), with the

agricultural regions again standing out as an exception

in latent heat flux linkages.

4. Variability

The standard deviations of daily soil moisture in each

of the top two layers of Noah for April–August over

North America are shown in Fig. 3 and globally in

Fig. S6 in the supplemental material. The largest vari-

ability is associated with the timing of snowmelt in bands

along the edge of the retreating snowpack from April to

June. Variability in the onset of the North American

monsoon manifests as a dark shaded region along the

Pacific coast of Central America andMexico inMay and

June. Fairly stationary regions of large soil moisture

standard deviation exist over central North America.

Florida has high values during spring that migrate north

along the Atlantic coast in summer. The Appalachian

Mountains and Piedmont maintain low soil moisture

variability throughout the period.

Variability for latent and sensible heat fluxes is pre-

sented in Fig. S7 and is described in the supplemental

material. The coupling index defined by Guo et al.

(2006) and Dirmeyer (2011) combines measures of

sensitivity and variability into a single metric. The index

can be expressed as cov(F, R)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(F)

p
, where F and R

stand for the forcing and response variables, the re-

sponse being downstream from the forcing assum-

ing cause–effect relationships in the process chain of

Santanello et al. (2011), calculated across all days in the

sample. The index tells how much the response variable

can be expected to vary for a one-standard-deviation

change in the forcing variable.

Terrestrial coupling indices linking surface soil

moisture (forcing) to latent and sensible heat fluxes

(responses) are presented in Fig. 4 for North America

and Fig. S8 in the supplemental material for the globe.

The sign of the index for sensible heat flux has been

reversed (anticorrelations are positive) for clarity and

comparison. The large positive values when latent heat

flux is considered (Fig. 4, left) have been equated with

coupling hot spots (e.g., Dirmeyer 2011; Dirmeyer et al.

2013). We see those regions migrate from Mexico and

the southern Great Plains during spring into all of the

Great Plains and the southeastern United States late in

summer. There are also spots across the Intermountain

West. Coupling via sensible heat flux again reflects the

snowmelt front but also the advancing monsoon at

lower latitudes. No regions show the opposite sign

of terrestrial coupling index between soil moisture

and sensible heat (,25Wm22) indicative of a positive

correlation.

The connection to the atmosphere is shown by at-

mospheric coupling indices in Fig. 5 and Fig. S9 in the

supplemental material. The link between surface sensi-

ble heat flux and boundary layer height is strong in areas

where the correlations were large in Fig. 2, notably in

lower latitudes, but also across snowmelt regions at

higher latitudes where the sensitivity is lower but vari-

ability is greater. The role of variability to enhance

coupling where sensitivities are moderate is evident for

the linkage between latent heat flux and cloud cover

(Fig. 5, right). In June–August, positive values over the

southern Great Plains and western mountains suggest

that land and atmosphere in these regions are strongly

coupled through the water cycle as well as the energy

cycle in CFS. The ‘‘hole’’ over the agricultural regions of

the Ohio, Mississippi, and Missouri River valleys in this

model is conspicuous.

5. Soil moisture memory

The lagged autocorrelation of daily soil moisture

decreases exponentially with lag because soil moisture

behaves very much like a first-order Markov process

(Schlosser and Milly 2002), meaning that soil moisture

memory, defined as the lag at which the log of the au-

tocorrelation drops to21, can be estimated from a curve

fit through estimates over a small number of lags

(Dirmeyer et al. 2016). Figure 6 presents estimates of

this element by month for each of the top two layers

of the Noah model in CFSv2 (globally in Fig. S10 in

the supplemental material). Memory is shorter for the
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surface layer than deeper layers and is longer than 1–

2 months in arid regions and under snowpack. It is very

short in rainy and humid regions. Over North America,

memory peaks for surface soil moisture in May–June in

the western United States but during July–August over

the Mississippi River valley. There is a shifting region of

low memory from the southeastern United States to

Quebec across the months. A key feature seen in North

America and globally (Fig. S10 in the supplemental

material) is that some of the classical hot spots of Koster

et al. (2004) also tend to have relatively low memory.

This is clearly evident for the Great Plains, where there

is actually a local minimum in memory during July and

August.

FIG. 3. The std dev of volumetric soil moisture (dimensionless) in the top two layers of the soil (areas of very low soil

moisture variability are masked out).
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Results from sections 3 to 5 are integrated in Table 1.

Area averages are calculated for the indicated quanti-

ties, which are represented in Fig. S1 in the supple-

mental material and Figs. 2–6. Averages over three

areas are considered as outlined in Fig. 1 (top right):

a western box spanning 358–458N, 1168–1068W; a central

box encompassing 338–438N, 1048–948W; and an eastern

box over 318–418N, 928–828W. Correlations between soil

moisture and surface fluxes are strongest over the

western United States. Latent heat flux correlations

become large after the transition from spring to summer

across the central and eastern areas but are fairly large

for sensible heat flux (in the absolute sense) throughout

the period. The evolution of correlations between soil

FIG. 4. As in Fig. 3, but for terrestrial coupling indices between (left) soil moisture and latent heat flux and (right)

negative of sensible heat flux.
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moisture and latent heat flux are mirrored by those be-

tween sensible heat flux and PBL depth.

Temporal soil moisture variability is largest over the

central United States, except during April when values

in the west are highest. Naturally, the coupling indices

reflect a combination of the correlations and variances,

meaning they are generally a bit stronger over the cen-

tral United States than the correlations, and a bit weaker

over the west. Soil moisture memory is always greatest

in the west during these months, generally declining

toward the east.

6. Connections to forecast skill

Canwe see the signature of the elements of sensitivity,

variability, and memory of land–atmosphere coupling in

FIG. 5. As in Fig. 2, but for atmospheric coupling indices described by the quantities indicated.
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the skill of retrospective forecasts made with CFSv2? In

this section we examine the skill of CFSv2 as it appears

to relate to land–atmosphere coupling. First, we com-

pare skill when land surface states are realistically ini-

tialized versus the random initialization procedure

described in section 2. Next, we note the tendencies for

the model to respond to locally positive and negative

differences in initial soil moisture. Last, we try to attri-

bute improvements in skill (or their absence) given re-

alistic soil moisture initialization to the three elements

of land–atmosphere coupling outlined in section 1. To

ensure a large sample size for the aggregated metrics

FIG. 6. As in Fig. 3, but for the memory (e-folding time of lagged autocorrelation) of volumetric soil moisture in the

top two layers of the soil.
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depicted in Figs. 9–12 and 14 (described in greater

detail below), global analyses only are presented in this

section.

a. Skill evaluation

There are significant increases in forecast skill asso-

ciated with realistic initialization of the land surface

state. Figure 7 shows regions that have better forecast

skill in the baseline member relative to the other 27

ensemble members, measured in terms of the in-

terannual ACC with CFSR. Regions with very small

soil moisture variability (standard deviation among all

simulations of top 10-cm soil moisture less than 0.005)

are masked out. Significance here is defined as skill with

realistic land initialization lying more than one stan-

dard deviation above the mean ACC of the 27 forecasts

with randomized land initializations. Results are shown

for 2-m temperature and humidity, and the shading in-

dicates the number of months for which the ACC of

monthly means remains more than one standard de-

viation above the mean of the ACC for the 27 corre-

sponding sets with randomized land initial conditions.

Maps of the time scales for significant reduction inRMSE

and MAE of predicted anomalies are quite similar but

not shown.

Large fractions of the land area have significant im-

provements for at least the first month of the forecast

period (40%–51% of the shaded area for temperature,

35%–45% for humidity), and some regions show nota-

ble improvements for one season or longer, particularly

in the Southern Hemisphere monsoon areas, which are

in their dry seasons. Improved skill beyond one month

tends to be slightly more widespread for humidity than

temperature, especially for 1 June forecasts. Improved

prediction skill at higher latitudes is likely due to the

snow cover initialization. Improvements to precipitation

(not shown) are minor and spotty in distribution, but

do pass significance testing on short time scales, as

shown later.

Figure 8 presents a similar analysis based on pentad

averages rather than months. Because of the shorter av-

eraging period, skill drops more quickly than in Fig. 7.

Pentads 3–6 are in the range of weeks 2–4, which are of

increasing interest in the realm of subseasonal fore-

casting. For CFSv2, 13%–16% of the land surface for

temperature and ;14% for humidity show significantly

increased skill for the third pentad or beyond. However,

most of the impact of initial soil moisture is through

pentads 1–3—increases of skill from pentad 4 onward

cover only 5%–9% of the land for temperature and 4%–

7% for humidity.

Figure 9 shows the global land average (excluding

areas covered with permanent ice) of the local ACC
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across 28 years for forecasts started on 1April, 1May, and

1 June for five different variables at various lead times.

This metric is an indicator of overall impact, or in a sense,

the global significance of the response to land surface

initialization. In each panel, the left-hand side shows re-

sults for pentad forecasts out to 35 days, and the right-

hand side is for monthly mean forecasts out to four

months. The bar-and-whisker symbols show the mean,

plus/minus one standard deviation, and range of

global averages across the 27 sets of forecasts con-

structed from the randomized initial land conditions

but with correct initial atmosphere and ocean states.

The connected dots are for the set of simulations with

correct/consistent land, atmosphere, and ocean ini-

tial conditions.

Starting from the left, top-layer soil moisture is

obviously seen to be strongly affected by correct land

surface initialization, and the globally averaged ACC

remains outside the envelope of the randomly ini-

tialized sets of forecasts throughout the forecast pe-

riod. The spike in skill at pentad 2 for the randomized

cases is due to the correct atmospheric initialization,

which introduces some skillful precipitation in the

early days of the forecasts, improving soil moisture

fidelity above the randomized initial states that have

an ACC of zero by construction (Dirmeyer et al.

2013). Impact of accurate soil moisture initialization is

reflected in global 2-m air temperature ACC for the

first 15–30 days in the pentad averages (skill above the

envelope of randomly initialized cases) and 1–4 months

for monthly means. Similar impacts are found for 2-m

humidity, but the skill in predicting daytime boundary

layer evolution is more strongly improved. It is telling

that this improvement is not reflected in the precipitation,

FIG. 7. Number of months where the monthly mean forecast of the indicated variables in simulations with re-

alistic land surface initialization at the indicated dates remains significantly better than forecasts with randomized

initial land states, with skill quantified by ACC. IC refers to the date of the initial conditions of the forecasts. The

colored bars beneath each map reflect the fraction of land area occupied by each skill duration category.
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where increased skill is seen for 5–10 days at most, and

not significantly evident in the monthly means. Given

the clear theoretical linkages between boundary layer

growth and precipitation (e.g., Ek and Holtslag 2004;

Gentine et al. 2013; Tawfik et al. 2015a,b), this sug-

gests the model parameterizations involved in con-

vection may not be sufficiently aided by better

boundary layer simulation to improve these statistics.

Other factors could also be responsible for the lack of

sensitivity, such as those that exist in regions outside of

convective precipitation regimes or where convection

is strongly controlled by properties of the free atmo-

sphere like midtropospheric lapse rates or moisture

flux convergence.

b. Asymmetric response to anomalies

For each forecast with land surface initialization from

the same day,month, and year as the atmosphere and land

states, there are 27 forecasts with land surface states taken

from the same day andmonth of other years. At each land

grid point, the differences between those 27 initial states

and the presumptively correct one are effectively errors in

initialization, sometimes quite large. We compare those

differences with subsequent errors in the forecasts of at-

mospheric states and properties to look for systematic

atmospheric responses that suggest sensitivity of forecasts

to land surface initialization errors.

We find some illuminating asymmetries in the response

to the randomized land surface initialization based on the

sign of the initial soil moisture errors (differences) and

the sign of the subsequent meteorological variable errors.

Figure 10 shows the evolution of errors in temperature

when they are significantly correlated with the errors in

the initial soil moisture for forecasts initialized at the

beginning of June (sample size 27 3 28 5 756; plots for

April and May initialization are given in the supple-

mental material as Figs. S12 and S13). The significances

are calculated separately for positive and negative

FIG. 8. As in Fig. 7, but for pentad averages.
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temperature errors, shown as maps for the indicated

pentads [Fig. 10 (top three plots, left)] and months

[Fig. 10 (top three plots, right)] of the forecast, and the

time series in Fig. 10 (bottom) shows the total percentage

of land area in each category. Warm colors are where

temperature and initial soil moisture errors are positively

correlated and cool colors are for anticorrelations, which

are more prevalent. There can be some overlap, for

example, a negative correlation between soil moisture

errors and temperature errors often exists for both posi-

tive and negative temperature errors (pale blue shading,

dotted time series), especially early in the forecast. The

pervasiveness of the areas of significant correlation and

their persistence in large regions of the globe for weeks

andmonths is a strong indicator of the importance of land

surface initialization over these regions.

Figure 11 similarly shows the monthly precipitation

forecast results for 1 June initialization (Fig. S14 in the

supplemental material shows results for April and May

initialization). Here positive correlations predominate,

especially for the case where a dry initial soil moisture

error leads to a negative precipitation error (yellow).

However, the second-most common association is where

overly wet soil moisture initial states lead to negative

precipitation errors (blue). Those regions are most com-

monly found in arid locations and appear to be associated

with the ‘‘dry soil convection advantage’’ regions char-

acterized by Findell and Eltahir (2003a,b), as are green

areas. It is also consistentwith Findell andEltahir (2003a,b)

that red areas, where positive soil moisture errors sig-

nificantly lead to positive precipitation errors, occur

preferentially over the eastern United States, which was

identified as having a ‘‘wet soil convection advantage.’’

For this model, erroneously low precipitation is much

more likely to result from soil moisture errors of either

sign than positive precipitation errors.

c. Skill attribution

The previous subsections demonstrate the extent

of positive relationships between realistic land sur-

face initialization and forecast skill improvements in

CFSv2. To understand the sources of increased skill

when they occur, comparisons with the distribution of

land–atmosphere coupling and soil moisture memory

have been conducted. First, we group global land grid

points for the forecasts of temperature and humidity

with each of the three initialization dates as shown in

Fig. 8 according to the number of pentads improvement

in significant skill with realistic initial soil moisture.

The same significance criterion is used. For each of the

10 bins (from no improvement up to 91 pentads exten-

sion of significant skill), we find the average terrestrial

coupling index for the bin at the beginning of the forecast,

associating 2-mair temperaturewith the coupling between

0–10-cm soil moisture and surface sensible heat flux (for

clarity represented here as positive for anticorrelations),

FIG. 9. For the indicated variables and initialization dates, the evolution of the global (land only) mean ACC for pentad and monthly

mean forecast periods with realistic land surface initialization (connected dots) and the range of cases with randomized land initial states

(boxes span plus/minus one std dev, whiskers span the entire range, and midline gives the mean).
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and 2-m specific humidity with coupling between soil

moisture and latent heat flux. Grid points with soil tem-

peratures below freezing are screened out, as soilmoisture

cannot vary in Noah when soil is frozen. Similarly, we

determine the soil moisture memory associated with each

of those same 10 bins.

The results are shown in Fig. 12. The gray plus signs are

values at individual grid points; some lie beyond the range

of the ordinate in these plots. Concentrating first on

Fig. 12 (top), we see a very clear trend in the quartiles for

the water cycle pathway (Fig. 12, right), wherein the ex-

tended skill of humidity forecasts correspond quite well

to higher terrestrial coupling between soil moisture and

surface latent heat flux. Such a clear trend is not evident

for the energy cycle pathway (Fig. 12, left), but we find

that if we correlate the latent heat coupling index with

temperature and the sensible heat coupling index with

humidity (not shown), the strong trends remain associ-

ated with the coupling between latent heat flux and soil

moisture. This can be interpreted that the degree of land–

atmosphere coupling through the water cycle pathway

is a determinant of prolonged forecast improvement from

realistic initial soil moisture.

Figure 12 (bottom) shows the relationship between

skill improvement and soil moisture memory. Note that

the memory is plotted on a logarithmic time scale, as

lagged autocorrelations of soil moisture behave like a

first-order Markov process with exponential decay

(Delworth and Manabe 1989; Robock et al. 1995;

Schlosser and Milly 2002). The mean is calculated in

terms of ln(time). Note that the definitions of soil mois-

ture memory and the number of pentads of skill increase

each necessarily contain arbitrary elements. For skill, the

choice of significance threshold and the averaging period

(5 days) are subjective choices, as is the 1/e threshold for

lagged correlation to define memory. Thus, although we

expect a direct relationship between the two axes, the

green 1:1 line is not a hard limit for soil moisture contri-

bution to extended skill but rather a visual guide. Indeed,

we see that the increase in soil moisture memory tracks

the skill increases for both temperature and humidity

rather well. Furthermore, the typical memory time scale

associated with multipentad increases in skillful pre-

dictions rises dramatically from April to June for both

temperature and humidity (i.e., the slopes of the linear

regressions increase), suggesting that the impact of soil

FIG. 10. Evolution of (left) pentad and (right) monthly 2-m temperature errors that are significantly correlated

with 1 Jun initial soil moisture errors (comparing the randomized initial land states to realistic states). (bottom)

Forecast periods in the maps are shaded in the time series of percentage of global land area in each category. Plus/

minus symbols indicate the corresponding signs of the errors; see text for details.
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moisture memory becomes a more important factor as

the boreal warm season evolves (cf. Guo et al. 2012).

Figure 13 presents maps of the ratio of forecast im-

provement time scale (simply the number of pentads

from Fig. 8 times five) to soil moisture memory time

scale. This can be interpreted as a measure of the ef-

fectiveness of soil moisture initialization in delivering

forecast improvement in CFSv2. As discussed above,

values greater than 1 (blue shades) should not be taken

as untenable. Rather, we should look at high values of

this ratio as places where potential predictability from

realistic soil moisture initialization is being harvested

in CFSv2. Correspondingly, lower values of this ratio

are an indication that soil moisture initialization has

not delivered much forecast improvement, given the

memory characteristics of the model. There are several

possible reasons for such a shortfall. Some are in the

category of unrealized predictability from the soil

moisture initialization. Perhaps the model soil mois-

ture memory is quite different than reality, impairing

results. Likewise, the soil moisture analysis from which

initial states are taken may not be truly accurate or

representative of the states at those locations. Alter-

natively, initial soil moisture may be accurate and

representative, but problems in the representation of

land surface processes in Noah, atmospheric processes

in GFSv2, or the models’ mutual coupled interactions

prevent the initial soil moisture anomalies from posi-

tively affecting temperature and humidity forecasts.

On the other hand, local atmospheric conditions may

not permit the existence of predictability fromknowledge

of land surface states—this would include cases where

coupling indices are weak (note that information is not

directly represented in Fig. 13). Figure 14 adds this factor

back into the analysis. The abscissa contains the range

between 0 and 1 of the ratio shown in Fig. 13. The ordi-

nate shows the terrestrial coupling indices as in Fig. 12.

We see clearly for the energy cycle pathway (Fig. 14, left)

and somewhat more weakly for the water cycle pathway

(Fig. 14, right) that there are positive trends in coupling

index statistics with the ratio. June humidity forecasts are

the exception. Otherwise, it appears that we may indeed

interpret low values of the ratio of skill improvement to

soil moisture memory as generally due to a lack of cou-

pling strength, particularly for the energy cycle pathway.

Figure 12 suggests the water cycle pathway may control

the absolute duration of forecast improvement, but

Fig. 14 suggests the energy cycle pathway has more effect

in determining the realization of potential predictability

from persistent soil moisture anomalies.

7. Conclusions

Land–atmosphere coupling can provide predictabil-

ity and prediction skill to the atmosphere beyond de-

terministic weather forecast time scales because land

surface states vary slowly relative to the atmosphere. In

order for the land surface to deliver on the potential of

increased prediction skill, there must be a demon-

strated sensitivity of model atmospheric states to var-

iations in land surface states, the magnitude of those

variations must be sufficiently large relative to other

sources of climate variability, and anomalies in land

surface states must persist long enough for their impact

on the atmosphere to become significant. Each of these

three elements has been quantified in the operational

NOAA/NCEP climate forecast model, CFSv2, using a

large suite of seasonal retrospective forecasts initial-

ized in April–June, wherein the effects of realistic

versus randomized land surface initialization are as-

sessed. We use these elements to describe impacts of

land surface initialization on screen-level temperature

and humidity, daytime boundary layer height, and

precipitation. Finally, land–atmosphere coupling and

soil moisture memory are compared to the changes in

forecast skill to deduce the role of each element as a

means by which skill improvements in land state ini-

tialization are realized in CFSv2.

FIG. 11. As in Fig. 10 (right), but for monthly precipitation errors.

102 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/10/21 04:45 PM UTC



FIG. 12. (top) The distribution of terrestrial coupling indices and (bottom) soil moisture

memory as a function of the increase in the duration of skillful forecasts of (left) 2-m air tem-

perature and (right) specific humidity for ensembles with the indicated start dates for global land

points that are ice free and do not have frozen soil. Red bars showmean values; blue boxesmark

median, first quartile, and third quartile. Straight lines are linear regressions though the median

and quartiles. The green line in the bottom denotes X5 Y, the same time scale on both axes.
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The most crucial element for improved forecast skill

due to land surface initialization appears to be soil

moisture memory—the degree of persistence of anoma-

lies that allow for alterations in surface fluxes, near-

surface temperature, humidity, and boundary layer

development. This is understandable, as a soil moisture

anomaly should only be able to affect the atmosphere for

as long as it exists. However, within the constraint of soil

moisturememory, wefind that land–atmosphere coupling

can help convert potential predictability into prediction

skill in CFSv2. We have found the signature of feedback

pathways through both the energy and water cycles

linking coupling strength to skill improvement for air

temperature, humidity, and boundary layer growth. Im-

pacts on precipitation, however, are only weakly positive.

Here we have portrayed the effects of land surface

initialization in the context of improvements (realistic vs

randomized initialization). However, there are several

points to consider. One is that there is an implicit

assumption that the source of land surface conditions,

which is from the CFSR dataset and ultimately from

the GLDAS land-only cycle with Noah driven by

observationally based meteorological analyses, is

perfect, or at least the best possible. In fact, there is

almost certainly room for improvement, especially

over regions where few actual surface observations

enter the data assimilation stream. Thus, these results

may not represent an upper bound for the impact of

improved prediction via land surface initialization, as

described in section 6c.

Second, the sensitivity displayed by forecasts to ‘‘im-

provement’’ of land surface states applies equally to er-

rors in the land surface state. This is related to the first

point and means that regions where we are seeing the

FIG. 13. The ratio of forecast improvement time scale (the number of pentads from Fig. 8 times five) to soil

moisture memory time scale. Areas of very low soil moisture variability, zero soil moisture memory, or any frozen

soil are masked out.
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greatest and longest-lasting (in terms of lead time) im-

provements in forecasts are likely susceptible to errors in

land initialization. These may be the regions where the

greatest care to ensure accurate meteorological obser-

vations, and ultimately real-time soil moisture monitor-

ing, should be employed.

Finally, the lack of responsiveness of precipitation

forecast skill to soil moisture initialization points to a

possible problem in model formulation, quite likely in

the convective parameterization in the atmosphericmodel

but possibly also in other aspects of model ‘‘physics.’’ We

make this statement based on the fact that other general

circulation models have demonstrated improved precip-

itation forecasts with more realistic soil moisture (e.g.,

Beljaars et al. 1996; Dirmeyer 2000; Koster et al. 2010,

2011). This may be related to problemsGFSv2 exhibits in

precipitation statistics (e.g., Dirmeyer 2013; Shin and

Huang 2016; Lien et al. 2016) and the connection be-

tween precipitation and surface fluxes (Zhang et al.

2011). Further study at the process level, combined with

the direct validation of coupling metrics with observa-

tional data, could elucidate whether there is genuine

unrealized predictability of precipitation originating from

the land surface.
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